Stationary Disturbances in Periodically Modulated Rotating Disk Boundary Layers

Scott Morgan

Supervisor: Dr. Christopher Davies

DiPaRT
21st November 2017
Dissecting the title...

Periodically Modulated Rotating Disk Boundary Layers

- Lengths scaled on constant boundary layer thickness: \(\delta = \sqrt{\nu/\Omega_0} \)
- Convectively unstable for stationary disturbances:
 - Type I: \(R_c \approx 286 \)
 - Type II: \(R_c \approx 440 \)

Malik (1986)
Dissecting the title...

Periodically Modulated Rotating Disk Boundary Layers

- Lengths scaled on constant boundary layer thickness:

\[\delta = \sqrt{\nu / \Omega_0} \]
Periodically Modulated Rotating Disk Boundary Layers

- Lengths scaled on constant boundary layer thickness:
 \[\delta = \sqrt{\nu/\Omega_0} \]

- \(R \equiv r_L \)

Malik (1986)
Periodically Modulated Rotating Disk Boundary Layers

- Lengths scaled on constant boundary layer thickness:
 \[\delta = \sqrt{\nu/\Omega_0} \]
- \(R \equiv r_L \)
- Convectively unstable for stationary disturbances:
 - Type I - \(R_c \approx 286 \)
 - Type II - \(R_c \approx 440 \)

Malik (1986)
Periodically Modulated Rotating Disk Boundary Layers

Adding oscillation to *channel* flow can be stabilising

Thomas et. al. (2011)
Dissecting the title...

Periodically Modulated Rotating Disk Boundary Layers
Periodically Modulated Rotating Disk Boundary Layers

Dominant behaviour is Stokes layer for high-frequency, low amplitude oscillations.
Why rotating disks?

- Rotating disks \approx Swept wings
Crossflow instabilities

Why rotating disks?

• Rotating disks \approx Swept wings
 • *Suppression of crossflow instability - focus on stationary disturbances.*
Crossflow instabilities

Why rotating disks?

- Rotating disks ≈ Swept wings
 - Suppression of crossflow instability - focus on stationary disturbances.

- Chemical applications - hydrodynamic voltammetry
Crossflow instabilities

Why rotating disks?

- Rotating disks \approx Swept wings
 - *Suppression of crossflow instability - focus on stationary disturbances.*

- Chemical applications - hydrodynamic voltammetry
- Other applications - mixing, atmospheric, oceanic
• Three-dimensional base flow

\[\mathbf{U}_B = (U, V, W) \]
Adding the oscillation...

- Three-dimensional base flow

\[\mathbf{U}_B = (U, V, W) \]

- Boundary conditions:

\[V(r, z = 0, t) = r \Omega(t) = r (\Omega_0 + \epsilon \phi \cos(\phi t)) \]

\(\Omega_0 \) - constant rotation rate
\(\epsilon \) - angular displacement
\(\phi \) - oscillation frequency
Scalings

- Retain steady scalings:

\[\delta = \sqrt{\frac{\nu}{\Omega_0}}, \quad \tau = (r_L \Omega_0) t \]
Scalings

- Retain steady scalings:
 \[\delta = \sqrt{\frac{\nu}{\Omega_0}}, \quad \tau = (r_L\Omega_0)\ t \]

- Reynolds numbers:
 \[R_k = r_L, \quad R_s = \epsilon \sqrt{\varphi} R_k \]

\[\varphi = \frac{\phi}{\Omega_0} \] - number of oscillations per disk rotation period
Scalings

• Retain steady scalings:

\[\delta = \sqrt{\frac{\nu}{\Omega_0}}, \quad \tau = (r_L \Omega_0) t \]

• Reynolds numbers:

\[R_k = r_L, \quad R_s = \epsilon \sqrt{\varphi} R_k \]

• Similarity structure:

\[U_B = \left(\frac{r}{R_k} F, \frac{r}{R_k} G, \frac{1}{R_k} H \right) \]

\[\varphi = \frac{\phi}{\Omega_0} \] - number of oscillations per disk rotation period
Scalings

- Retain steady scalings:
 \[\delta = \sqrt{\frac{\nu}{\Omega_0}}, \quad \tau = (r_L \Omega_0) t \]

- Reynolds numbers:
 \[R_k = r_L, \quad R_s = \epsilon \sqrt{\phi} R_k \]

- Similarity structure:
 \[U_B = \left(\frac{r}{R_k} F, \frac{r}{R_k} G, \frac{1}{R_k} H \right) \]

- Boundary conditions:
 \[V(r, z = 0, t) = r \Omega(t) \]
 \[= r \left(\Omega_0 + \epsilon \phi \cos(\phi t) \right) \]

\[\phi = \frac{\phi}{\Omega_0} \] - number of oscillations per disk rotation period
Scalings

- Retain steady scalings:
 \[\delta = \sqrt{\frac{\nu}{\Omega_0}}, \quad \tau = (r_L \Omega_0) t \]

- Reynolds numbers:
 \[R_k = r_L, \quad R_s = \epsilon \sqrt{\varphi} R_k \]

- Similarity structure:
 \[\mathbf{U}_B = \left(\frac{r}{R_k} F, \frac{r}{R_k} G, \frac{1}{R_k} H \right) \]

- Boundary conditions:
 \[G(z = 0, \tau) = 1 + \frac{R_s \sqrt{\varphi}}{R_k} \cos \left(\frac{\varphi}{R_k} \tau \right) \]

\[\varphi = \frac{\phi}{\Omega_0} - \text{number of oscillations per disk rotation period} \]
Scalings - Important Parts

- Boundary conditions:

\[G(z = 0, t) = 1 + \frac{R_s \sqrt{\varphi}}{R_k} \cos \left(\frac{\varphi}{R_k} \tau \right) \]

\[\Rightarrow U_w = : U_w \]

- Three parameters:

\((R_k, R_s, \varphi) \) \quad or \quad \((R_k, U_w, \varphi) \)

\((R_s, U_w \to 0 \text{ recovers steady case}) \)
Scalings - Important Parts

- Boundary conditions:
 \[G(z = 0, t) = 1 + \frac{R_s \sqrt{\varphi}}{R_k} \cos \left(\frac{\varphi}{R_k} \tau \right) \]
 \[\equiv U_w \]

- Three parameters:
 \((R_k, R_s, \varphi)\) or \((R_k, U_w, \varphi)\)

 \((R_s, U_w \to 0 \text{ recovers steady case})\)

- Choose to vary:
 \((R_k, U_w, \varphi)\)

 and constrain \(U_w < 0.25\).
Approaches

- Three approaches:
 - Floquet Theory
 - Linear DNS
 - Solve Navier-Stokes equations using velocity-vorticity formulation.
Approaches

- Three approaches:
 1. Floquet Theory
Three approaches:

1. Floquet Theory
2. *Linear DNS*
Approaches

Three approaches:

1. Floquet Theory
2. Linear DNS
3. Frozen Flow Analysis
Approaches

- Three approaches:
 1. Floquet Theory
 2. Linear DNS
 3. Frozen Flow Analysis
Approaches

- Three approaches:
 1. Floquet Theory
 2. Linear DNS
 3. Frozen Flow Analysis

- Solve Navier-Stokes equations using velocity-vorticity formulation.
Approaches

1. Floquet Theory
Floquet Theory

- *Floquet* mode approximation:

\[u(r, \theta, z, \tau) \sim \hat{u}(z, \tau)e^{i\alpha r}e^{i\mu \tau}e^{in\theta} \]

- \(\hat{u}(z, \tau) \) periodic
Floquet Theory

- Floquet mode approximation:
 \[u(r, \theta, z, \tau) \sim \hat{u}(z, \tau) e^{i\alpha r} e^{i\mu \tau} e^{in\theta} \]
- \(\hat{u}(z, \tau) \) periodic
- Harmonic decomposition gives eigenvalue problem:
 \[\sum_{k=-K}^{K} \mathcal{L}_k \{ \mu, \alpha; n, R_k, R_s, \phi \} e^{ik\tau} = 0 \]
Floquet Theory

- **Floquet mode approximation**:

 \[u(r, \theta, z, \tau) \sim \hat{u}(z, \tau) e^{i\alpha r} e^{i\mu \tau} e^{in\theta} \]

 - \(\hat{u}(z, \tau) \) periodic

- Harmonic decomposition gives eigenvalue problem:

 \[\sum_{k=-K}^{K} \mathcal{L}_k \{ \mu, \alpha; n, R_k, R_s, \varphi \} e^{ik\tau} = 0 \]

 - Specify \(\mu \) or \(\alpha \) as real and solve for the other.
Choose $R = 500$, $n = 32$ for comparison data.

$$\alpha = 0.2814 - 0.0702i$$
Recall: $u(r, \theta, z, \tau) = u(z, \tau)e^{i\alpha r}e^{in\theta}$
$R_k = 500$, $n = 32$, $U_w \in \{0, 0.1\}$, $\varphi \in [0, 100]$

Recall: $u(r, \theta, z, \tau) = u(z, \tau) e^{i\alpha r} e^{in\theta}$
Recall: $u(r, \theta, z, \tau) = u(z, \tau)e^{i\alpha r}e^{in\theta}$

$R_k = 500$, $n = 32$, $U_w \in \{0, 0.1, 0.2\}$, $\varphi \in [0, 100]$
Recall: \(\mathbf{u}(r, \theta, z, \tau) = u(z, \tau)e^{i\alpha r}e^{in\theta} \)

\(R_k = 500, \; n = 32, \; U_w = \{0, 0.1, 0.2, 0.25\}, \; \varphi \in [0, 100] \)
Neutral Curves

Steady Neutral Curves
Neutral Curves

\[U_w = 0.2, \, \varphi = 15 \]
Neutral Curves

\[U_w = 0.1 \]
Neutral Curves

\[U_w \in \{0.1, 0.2\} \]
2. **Linear DNS**
• Measure the response of the flow to a *stationary* disturbance.
Linear DNS

- Measure the response of the flow to a stationary disturbance.
- Steady case: wall motion of the form

\[\zeta(r, \theta, \tau) = e^{-\lambda r^2} e^{in\theta} \]
Linear DNS

- Measure the response of the flow to a *stationary* disturbance.
- Steady case: wall motion of the form

\[\zeta(r, \theta, \tau) = e^{-\lambda r^2} e^{in\theta} \]

\[u(r, z = 0, \tau > T_c) \text{ - steady: } R_k = 500, n = 32 \]
• Measure the response of the flow to a \textit{stationary} disturbance.

• θ coordinate changes:

$$\theta \rightarrow \theta_0 + \int^{\tau} \Omega(\tilde{\tau})$$
• Measure the response of the flow to a \textit{stationary} disturbance.

• \(\theta \) coordinate changes:

\[
\theta \rightarrow \theta_0 + \int_{\tilde{\tau}}^{\tau} \Omega(\tilde{\tau})
\]

• Forcing stationary with respect to modulated disk:

\[
\zeta(r, \theta_0, \tau) = e^{\lambda r^2} e^{in\theta_0} e^{in \int_{\tilde{\tau}}^{\tau} \Omega(\tilde{\tau})}
\]
• Measure the response of the flow to a stationary disturbance.

• θ coordinate changes:

$$\theta \rightarrow \theta_0 + \int_{0}^{\tau} \Omega(\tilde{\tau})$$

• Forcing stationary with respect to modulated disk:

$$\zeta(r, \theta_0, \tau) = e^{\lambda r^2} e^{in\theta_0} e^{in\int_{0}^{\tau} \Omega(\tilde{\tau})}$$

negligible
• Measure the response of the flow to a *stationary* disturbance.

\[u(r, z = 0, \tau > T_c) \text{ - steady: } R_k = 500, n = 32 \]
• Measure the response of the flow to a stationary disturbance.

\[u(r, z = 0, \tau > T_c) - \text{modulated: } R_k = 500, n = 32, U_w = 0.1, \varphi = 10 \]
• Normal mode approximation:

\[u(r, \theta, z, \tau) = u(z, \tau)e^{i\alpha r}e^{in\theta} \]
• Normal mode approximation:

\[u(r, \theta, z, \tau) = u(z, \tau)e^{i\alpha r} e^{in\theta} \]

• Given \(A = u(r, z = 0, \tau > T_c) \), we can calculate:

\[\alpha_i \simeq -i \frac{\partial A}{A} \frac{\partial}{\partial r} \]
• Normal mode approximation:

\[\mathbf{u}(r, \theta, z, \tau) = u(z, \tau) e^{i\alpha r} e^{in\theta} \]

• Given \(A = u(r, z = 0, \tau > T_c) \), we can calculate:

\[\alpha_i \simeq -i \frac{\partial A}{A \partial r} \]

• \(-\alpha_i\) gives radial growth rate.
\[
\Delta \alpha_i = \alpha_i^m - \alpha_i^s \text{ against } \varphi \text{ for } R_k = 500, \ n = 32 \text{ and } U_w \in \{0.1, 0.2\}.
\]
DNS (dots) vs. Floquet (line)
Current & Future Work

- Look at parallels between oscillation and surface roughness.
 - *S. Garrett, P. Thomas et. al.* show similar stabilising effects.
Current & Future Work

- Look at parallels between oscillation and surface roughness.
 - S. Garrett, P. Thomas et. al. show similar stabilising effects.
- Experimental confirmation. [P. Thomas (Warwick)]
Current & Future Work

- Look at parallels between oscillation and surface roughness.
 - *S. Garrett, P. Thomas et. al.* show similar stabilising effects.
- Experimental confirmation. [*P. Thomas (Warwick)*]
- Explore torsional oscillations.
Thank You