A beam reduction method for wing aeroelastic design optimisation with detailed stress constraints

O. Stodieck, J. E. Cooper, S. A. Neild, M. H. Lowenberg
University of Bristol

N.L. Iorga
Airbus Operations Ltd.
Overview

- Motivation
 - Benefits of analysis-specific structural idealisations (hi-fidelity / low-fidelity)
 - Integration of the beam reduction method into an aeroelastic design optimisation
- Beam reduction method description
 - Overview
 - Stiffness reduction
- Examples
 - Rectangular wingbox model
 - University of Bristol Ultra-Green (BUG) aircraft wingbox
- Conclusions
Motivation
Benefits of analysis-specific structural idealisations

Why do we use different structural idealisations?

Hi-fidelity = Accuracy

Low-fidelity = Speed

Example:
- Flutter analysis
 \[10^2\,\text{DOF}^*\]

Example:
- GFEM** Internal loads analysis
 \[10^4\,\text{to}\,10^6\,\text{DOF}\]

DC3 wing section

* Degrees of freedom
** Global finite element model
How can we do MDO* with high and low fidelity structural idealisations?

Example:
Automatic beam reduction integration into a Multidisciplinary Feasible (MDF) architecture.

*Multidisciplinary design optimisation
Beam reduction method description
Beam reduction method - Overview

GFEM with variables $[v]$
- Thicknesses
- Ply percentages
- Stringer orientations …

Beam with properties $[\Omega]$ and $[M]$
Beam reduction method - Overview

Stiffness reduction
- Definition of a beam reference axis
 - Manual input
- Beam element flexibility matrix \([C]\) (numerical)
 - Auto-automated
- 13 physical isotropic beam element stiffness parameters \(\Omega\) (analytical)
 - Auto-automated

Mass reduction
- Definition of lumped mass element groups
 - Manual input
- Lumped mass and inertia matrix \([M]\) determination (numerical)
 - Auto-automated

\[
\frac{\partial C}{\partial v} \quad \frac{\partial \Omega}{\partial C} \quad \frac{\partial \Omega}{\partial v} \quad \frac{\partial M}{\partial v}
\]
Stiffness reduction

Example: BUG wing model GFEM

Manual input

Global model analysis coordinate system

Stringer datum
Rib datum

Beam Element Reference Axis

Fuselage/Wing Interface

Local beam reference axis coordinate system

Global model analysis coordinate system

Stringer (equivalent area and offset shown)
Multi-point Constraint
Upper Skin

Front Spar

Beam Node

Spar Cap

Rear Spar

1 Rib-bay

Section 1
Section 2
Section 3

Straight beam sections

Manual input
Stiffness reduction

Definition of a beam reference axis

Beam element flexibility matrix determination (numerical)

Calculation of 13 physical isotropic beam element stiffness parameters

1) GFEM analysis with 6 static tip load cases / section

2) Nodal deflection and rotation output

3) Post-process to find 6x6 \([C]\) matrix / beam element

Note:
This approach is equivalent to the ‘blade property extraction’ (BPE) method used for wind-turbine blades: Malcolm DJ, Laird DL. Extraction of equivalent beam properties from blade models. Wind Energy. 2007 Mar 1;10(2):135-57.
Stiffness reduction

→ \(\Omega \) defines the properties of an isotropic Timoshenko theory beam element.

→ \(\Omega \text{ is calculated analytically} \) from \([C]\) and assumed isotropic material properties \(E \) and \(G \).

→ Non-dimensional bend-twist coupling parameters \(\Psi = K/\sqrt{EI \cdot G} \) can be derived as functions of \(\Omega \).

Bend-twist coupling exists for any \(SC_A \neq SC_B \)

\[
\Omega = [SC_{AY}, SC_{AZ}, SC_{By}, SC_{Bz}, \bar{J}, \bar{I}_1, \bar{I}_2, \bar{I}_{12}, \bar{N}_y, \bar{N}_z, A, \bar{k}_y, \bar{k}_z]^T
\]

Effective shear centre offsets at nodes A and B = elastic axis definition

Bending and Torsion Stiffness parameters

Section centroid offsets from the elastic axis

Section Area

Timoshenko shear coefficients
Examples
Rectangular wingbox model

Constant-section rectangular wing-box GFEM:
16.8m span (28 rib bays), 1.68m chord and 1.0m height

Baseline model stiffness, with
- \(SC_A = SC_B = 0 \)
- \(N_Y = N_Z = 0 \)

- Stiffness increase at the root (\(Y=0m \)) >> **boundary constraint effect**
- Stiffness reduction at the tip (\(Y=16.8m \)) >> **load introduction effect**

due to the multipoint constraint (RBE3) assumption here resulting in equally distributed skin forces, not taking into account the section stiffness distribution or the skin/stiffener offsets.
Rectangular wingbox model

Effect of incremental stiffness changes on the elastic axis (locus of shear centres).

Baseline + Thicker front spar + Unbalanced skin laminate + Rotated rib

$SC_A = 0$

$SC_B = 0$

Model 1

Model 2

Model 3
Gradients of the rectangular wingbox model

Stiffness parameter sensitivities to changes in the +45° fibre percentage in the upper skin.

Gradients are captured accurately.
University of Bristol Ultra-Green (BUG) aircraft wingbox (static & dynamic)
University of Bristol Ultra-Green (BUG) aircraft wingbox (static & dynamic)

Comparison of the GFEM and equivalent beam displacements and rotations for an applied tip force (linear analysis).

Static deflections captured accurately (tip displacements within 5% error).

*Twist due to wing sweep + bend-twist coupling
University of Bristol Ultra-Green (BUG) aircraft wingbox (static & dynamic)

Frequency response plots at the wing tip, for an applied wing tip excitation force of 10^4N in the Global Z-direction.

Dynamic behaviour captured accurately (first 10 modes natural frequencies within 2.1% error).

1.26 Hz (-0.1% Freq. error)
First up/down bending mode

3.18 Hz (0.1% Freq. error)
First FWD/AFT bending mode

14.78 Hz (0.5% Freq. error)
Mode 8

16.3 Hz (2.1% Freq. error)
Mode 9
Conclusions
Summary:

✓ Developed a numerical method for efficiently and accurately reducing a high-fidelity GFEM to a Timoshenko beam theory model with lumped masses.
✓ Suggested an approach for integrating the beam reduction method into a gradient-based aeroelastic design optimisation architecture.

Advantages:

<table>
<thead>
<tr>
<th>Speed</th>
<th>or</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ faster aeroelastic optimisation</td>
<td>➢ more aeroelastic load cases</td>
<td></td>
</tr>
<tr>
<td>➢ large deflection cases</td>
<td>➢ more refined GFEM</td>
<td></td>
</tr>
</tbody>
</table>

• **physical insight into the GFEM design optimization results** (e.g. quantify bend-twist coupling in terms of elastic axis rotation or Ψ values)
• **information about the effects of design changes** on the overall wing stiffness and mass properties, in the vicinity of the current design
• Publication:

• Contact:
 • Dr Olivia Stodieck (olivia.stodieck@bristol.ac.uk)

• Acknowledgements
 • Airbus and Innovate UK (AWI project)