Modelling the Unsteady Loads of Plunging Airfoils in Attached, Light and Deep Stall Conditions

N. Chiereghin, D.J. Cleaver, I. Gursul, S. Bull

DiPart 2017

Partnership with

AIRBUS

UNIVERSITY OF SOUTHAMPTON

EPSRC Engineering and Physical Sciences Research Council
Introduction

- Aims and scope
- Models of aerodynamic loads

Experimental Setup

Results

- Mean lift
- Unsteady lift amplitude
- Mean pitching moment
- Unsteady pitching moment amplitude
- Phase-averaged loads and flow field

Conclusions
Aims and scope

AIMS of the project:
- Create database of loads and flow field measurements for validation of models and CFD methods
- Test existing reduced order models for high reduced frequency and high angle of attack
- Development of flow control devices to reduce extreme loads

Scope of this presentation:
- Quasi-2D wing (airfoil) flow
- Unsteady lift and pitching moment for reduced frequency up to $k \approx 1.1$
- Compare loads measurements with predictions from Theodorsen, Leishman-Beddoes, Goman-Khrabrov and LDVM
A vertically plunging airfoil is characterized by a periodic oscillation of the effective angle of attack.

Wing vertical position:

\[h(t) = \frac{A}{2} \cos 2\pi f t \]

Effective angle of attack:

\[\alpha_{eff}(t) = \alpha + \tan^{-1}\left(\frac{U_{pl}(t)}{U_\infty}\right) \]
In this presentation the following reduced-order models are considered:

- Theodorsen
- Leishman-Beddoes (LB)
- Goman-Khrabrov (GK)
- LESP-based discrete vortex method (LDVM)
Modelling: Theodorsen Model

- Theodorsen theory assumed incompressible, attached, irrotational flow and planar wake.

- Unsteady lift includes period variation of circulation (effective angle of attack, wake), and “added mass” effect

\[C_l = \left[2\pi k j C(k) - \pi k^2 \right] A_c e^{j\omega t} + 2\pi \alpha \]

- Pitching moment at \(\frac{1}{4} \) of the chord depends only on the added mass effect, no effect from circulation

\[C_{m,\frac{1}{4}} = \left[\frac{\pi}{4} k^2 \right] A_c e^{j\omega t} \]
Modelling: semi-empirical models

\(\alpha_{eff}, \) (forcing)

Unsteady attached flow

Trailing edge separation

Leading edge separation

Vortex shedding

Circulation

Added-mass: function of \(\alpha_{eff} \)

Semi-empirical models have been developed to account for the higher complexity of the flow field around the stall angle

• Leishman-Beddoes (LB), indicial response
• Goman-Khrabrov (GK), state-space representation
Modelling: semi-empirical models

\[C_L^f = C_N(\alpha(M)) \left(\frac{1 + \sqrt{f}}{2} \right)^2 \alpha \]

\(\alpha_{eff}, \) (forcing)

Unsteady attached flow

Trailing edge separation

Leading edge separation

Vortex shedding

Static separation

\(\alpha_1 \) stall angle
\(S_1, S_2 \) empirical constants

\(f \): position of trailing edge separation
(0: attached flow, 1: full separation)
Modelling: semi-empirical models

\[\alpha_{eff}, \text{ (forcing)} \]

Unsteady attached flow

Trailing edge separation

Leading edge separation

Vortex shedding

Loads

Dynamic stall

Leishman-Beddoes (LB)

Delay in separation calculated with indicial method

\[f''_i = f'_i - D_{f_i} \]

\[D_{f_i} = D_{f_{i-1}} e^{\left(\frac{\Delta s}{T_f}\right)} - (f'_i - f'_{i-1}) e^{\left(\frac{\Delta s}{2T_f}\right)} \]

Where \(\Delta s \) is time step, \(T_f \) empirical constant

Goman-Khrabrov (GK)

State-space representation

\[\tau_1 \frac{df}{dt} + f = f_0 (\alpha - \tau_2 \frac{d\alpha}{dt}) \]

\(f_0 \) static separation parameter

\(\tau_1 \) delay in angle of attack

\(\tau_2 \) delay in separation

\(f \) load parameter

Separation

Leading edge vortex

Delayed separation

Re-attachment
Modelling: semi-empirical models

\(\alpha_{\text{eff}}, \) (forcing)

- Unsteady attached flow
- Trailing edge separation
- Leading edge separation
- Vortex shedding

\(\text{Loads} \)

Dynamic stall

- Separation
- Leading edge vortex
- Delayed separation
- Re-attachment

Instantaneous vortex contribution equal to the difference between theoretical linear lift and static lift for a given effective angle of attack
Modelling: Discrete Vortex Method

- **LDVM**: Discrete vortex method based on leading edge separation parameter (LESP)

- Extension of unsteady airfoil theory for large and high frequency oscillation, and non-planer wake. Instantaneous chord-wise bound vorticity described as a Fourier series.

\[
\gamma(\theta, t) = 2U(t) \left[A_0(t) \frac{1 + \cos \theta}{\sin \theta} + \sum_{n=1}^{\infty} A_n(t) \sin(n\theta) \right]
\]

\[
A_0(t) = -\frac{1}{\pi} \int_{0}^{\pi} \frac{W(x, t)}{U(t)} d\theta
\]

\[
A_n(t) = \frac{2}{\pi} \int_{0}^{\pi} \frac{W(x, t)}{U(t)} \cos(n\theta) d\theta
\]

- Separation at the leading edge starts as a consequence of the strong adverse pressure gradient just downstream of the suction peak. A Leading edge separation parameter (LESP) is defined as the normalized leading edge velocity:
- \(\text{LESP} = A_0 \). Leading edge separation starts when \(\text{LESP} > \text{LESP}_{\text{crit}} = 0.25 \)
Modelling: Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Shortcomings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theodorsen</td>
<td>• Exact solution</td>
<td>• Only valid for small oscillation</td>
</tr>
<tr>
<td></td>
<td>• No numerical integration</td>
<td></td>
</tr>
<tr>
<td>Semi-empirical models (LB, GK)</td>
<td>• Account for dynamic stall</td>
<td>• Requires a number of empirical constants</td>
</tr>
<tr>
<td></td>
<td>• Faster than other numerical methods</td>
<td>• Not validated for high frequency plunging motion</td>
</tr>
<tr>
<td>LDVM</td>
<td>• Better representation of the LEV</td>
<td>• Assumption of attached flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Slower than semi-empirical model</td>
</tr>
</tbody>
</table>
Experimental Facility

- **Water Tunnel:** $Re=20,000$
- **Water Tunnel: Rig:** lightweight, frictionless air bearing carriage, linear motor, accelerometer and optical encoder.
- **Wing:** NACA0012 profile, chord $c=62.71\text{mm}$, aspect ratio $AR=5$
PIV Measurements

• **Flow Field:** 2D-PIV. Laser applied in the mid-span of the wing. Images acquired with a 4MP camera installed underneath the water tunnel. Spatial resolution of the velocity field is about 1% of the chord.

• **Glass plate:** 2 mm from the wing tip, enable quasi-2D flow and optical access for the camera
Load Measurements

Lift Measurements
• Load Cell
• Non-dimensional lift: \(C_l = \frac{F_y}{0.5 \rho U_{\infty}^2 c L} \)

Pitching moment:
• measured at \(\frac{1}{4} \) of the chord
• Torque sensor: \(C_{Mz} = \frac{M_z}{0.5 \rho U_{\infty}^2 c L c} \)

• Data reduction through Fourier approximation:
\(C_l(t) \approx a0 + a1 \cos(2\pi ft + \phi) \)
• Accelerometer is used to remove inertial force of moving structures from the measured signal
• Measurements validated with literature (Chiereghin et al, 2017)
Experiments: Parameters definition

- **Experimental text matrix:**
 - Angles of attack $\alpha = 0, 5, 9, 15, 20^\circ$
 - Chord-based reduced frequency, $k = \pi Sr_c = 0$ to 1.1, alternatively: Strouhal number, $Sr_c = \frac{fc}{U_\infty} = 0$ to 0.35
 - Peak to peak amplitude: $A/c = 0.05$ to 0.5
 - This produces a peak effective angle of attack up to $\approx 45^\circ$
Contents

Introduction

▪ Aims and scope
▪ Models of aerodynamic loads

Experimental Setup

Results

▪ Mean lift
▪ Unsteady lift amplitude
▪ Mean pitching moment
▪ Unsteady pitching moment amplitude
▪ Phase-averaged loads and flow field

Conclusions
Time-averaged Lift, Theodorsen, LDVM

- Strong mean lift enhancement, in particular in post-stall conditions
- For sufficiently high k and A/c, the linear lift $2\pi\alpha$ is also exceeded
- Good predictions of mean lift from LDVM up to stall angle $\alpha=9^\circ$
- Poor agreement between exp. and LDVM in post stall $\alpha=15^\circ$ or higher
Time-averaged Lift, semi-empirical models

- The methods do not match the experimental data
- Reasonable prediction of the trend only for $k<0.5$
Effect of vortical structures

$k=0.94 \ A/c=0.5$

- Mean lift offset determined by coherent vortical strictures
Lift enhancement, data trend

- Some trend observed between the lift enhancement and the maximum effective angle of attack during a plunging cycle.

\[C_{l,\text{mean}} - C_{l,\text{static}} \]

\[\max(\alpha_{\text{eff}}) \ [^\circ] \]
Lift amplitude, Theodorsen, LDVM

- Reasonable agreement with Theodorsen even at high k
- However, experimental amplitude exceeds Theodorsen prediction at some point for $\alpha \geq 15^\circ$
- Better agreement with LESP
Lift amplitude, semi-empirical models

- Reasonable prediction from LB
- Good prediction from GK only at low k (<0.4)
• Plunging produces a “nose-down” pitching moment

• Good prediction from LESP only for A/c=0.5
Pitching Moment Amplitude, Semi-empirical Models

- Experimental data follows Theodorsen trend only for $\alpha=0^\circ$
- For $\alpha\geq9^\circ$ the trend is not monotonic, with local minimum and local maximum
- LESP predicts the trend but not the frequency of the local minimum/maximum and their magnitude
Effect of the Reduced Frequency

α=15°, A/c=0.5, t/T=0.5

- Vortical structures produce a departure from Theodorsen prediction.
- This difference is more evident for the pitching moment where the suction effect at the downstroke of the motion produces a nose-down moment opposite to the nose-up moment of the added-mass.
Effect of the Geometric Angle of Attack

- Position and intensity of the vortex at the downstroke depends on both the frequency and the geometric angle of attack
- Evident effect on the pitching moment loop
- Modelling more complicated
1. Mean lift is poorly estimated by all methods.
 • Good prediction from LDVM only at high plunging frequency and amplitude
 • Semi-empirical models good only at low frequency
 • Approximate linear correlation with maximum effective angle of attack

2. Theodorsen provides good predictions of lift amplitude and phase lag even in post-stall conditions. However, poor predictions of unsteady pitching moment
 • Some improvement provided by LDVM

3. Non-monotonic variation of pitching moment amplitude caused by convection of LEV